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STABILITY OF A VISCOELASTIC PLATE

IN FLUID FLOW

UDC 532.526I. V. Denisova, D. A. Indeitsev, and A. V. Klimenko

The stability of an infinite viscoelastic plate on an elastic foundation in a viscous incompressible flow
is studied. The Navier–Stokes system is linearized for an exponential velocity profile. The problem is
reduced by a Fourier–Laplace transform to a system of ordinary differential equations, whose solution
is found in the form of convergent series. The roots of the dispersion relation that characterize the
stability of the system are found numerically. The effect of the viscosities of the fluid and the plate on
the stability of the waves propagating upstream and downstream is studied. The results are compared
with available data on the stability of a viscoelastic plate in an ideal fluid flow.
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Introduction. The problem of the interaction of a viscous fluid flow with the time-varying surface of
an elastically deformable solid is important from both practical and theoretical points of view. Despite many
papers on this problem, many issues related to the stability of the examined mechanical system have not been
adequately studied. Experimental verification of the theoretical results indicating intense vibrations of structural
members in flow of a viscous continuous medium (gas or liquid) is extremely difficult. In each particular case,
a special mathematical model is constructed and the type of instability depends appreciably on the choice of a
physical model (see, for example, [1–5]). In the present paper, we study in detail the effect of internal friction
(structural damping) and external friction (fluid viscosity) on the stability of a viscoelastic plate on an elastic
foundation. Generally, the chosen physical model is characterized by two types of instability: divergence and panel
flutter. These phenomena have been well studied for a plate in an ideal incompressible fluid flow with a velocity
profile constant in both time and coordinates. In the present work, the description of these phenomena is refined
by a detailed consideration of the waves propagating both downstream and upstream. Accounting for external (or
internal) friction in the nonconservative problem in question leads to rather ambiguous results (see, for example, [6]).
Our studies have shown that these two types of friction differently influence the stability of the waves propagating
in opposite directions.

For the viscous fluid model, the main velocity profile was assumed to be exponential. As is known, this
profile can be produced asymptotically by suction of fluid from the boundary-layer flow over a motionless surface [7].
Theoretical and experimental studies have shown that the exponential structure is stable. At the same time, real
profiles can be well approximated by a linear combination of exponential profiles with appropriate parameters.

In this paper, we propose a convenient method for the numerical solution of the problem for the case of
exponential-velocity flow over the vibrating surface of a plate. It is shown that the parameters of the elastic body
have a significant influence on the stability of the system. In addition, the explicit solution of the equation for
an ideal fluid and its comparison with the results obtained numerically for a viscous fluid suggest that there is a
fundamental difference in the behavior of the waves propagating (downstream and upstream) in viscous and ideal
fluid flows over a plate.
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1. Formulation of the Problem. We assume that the flow depends only on the vertical coordinate;
therefore, the problem can be treated as the problem of two-dimensional flow above an infinite vibrating beam
(Bernoulli–Euler beam) on an elastic foundation.

Generally, the problem of the flow u∗ over an elastic beam in a half-plane is formulated as follows. It is
required to find the shape of the beam Γ(w(y)), the velocity field V = (V1, V2), and the function of the fluid pressure
p that satisfy the Navier–Stokes equations

V̇ + (V · ∇)V − ν∆V + ρ−1∇p = 0,

∇ · V = 0 in Ω = {(x, y): y > w},
(1.1)

and the initial and boundary conditions

V
∣
∣
∣
Γ

= vb, lim
y→+∞V = u0, V

∣
∣
∣
t=0

= V0. (1.2)

In (1.1) and (1.2), ∇ = (∂/∂x, ∂/∂y), ∆ = ∇ · ∇, the positive constants ν are ρ are the kinematic viscosity of the
fluid and its density, respectively, vb is the velocity of the beam, u0 = (u0, 0) is the limiting flow velocity at infinity,
V0 is the initial velocity field (the dot above the symbol denotes the time derivative), and w is the deviation of the
beam from the zero position y = 0 (it is assumed that the beam can have only a vertical deviation).

In addition, we assume that the deviation w satisfies the well-known equation

mẅ + D(w′′′′ + κẇ′′′′) + Kw = ey · Tn (t > 0), (1.3)

where the prime denotes the derivative with respect to the horizontal coordinate x, m and D are the mass per unit
length of the beam and it flexural rigidity, respectively, K is the rigidity coefficient of the elastic foundation, κ is
a coefficient that characterizes the internal friction of the beam, n is the normal to Ω that is external with respect
to the region Γ, ey is the unit vector on the y axis, and T is the stress tensor with the components

Tik(V , p) = −pδk
i + µ

( ∂Vi

∂xk
+

∂Vk

∂xi

)

(i = 1, 2; k = 1, 2).

Here δk
i is the Kronecker symbol, x1 ≡ x, x2 ≡ y, and µ = νρ is the dynamic viscosity of the fluid. As x → ∞, the

function w and its derivatives are considered bounded.
2. Linearization of System (1.1)–(1.3) for Flow with an Exponential Velocity Profile. We

linearize system (1.1)–(1.3) for the vector u∗ = (u∗(y), 0), where u∗(y) = −u0(1 − e−λy) (λ > 0), and write the
boundary-value problem for the perturbations (u, q, w) in the half-plane R

2
+ (y > 0):

u̇ − ν∆u + (u∗ · ∇)u + (u · ∇)u∗ + ρ−1∇q = 0,

∇ · u = 0 in R
2
+ × (0,∞);

(2.1)

u1

∣
∣
∣
y=0

= 0, u2

∣
∣
∣
y=0

= ẇ, lim
y→+∞
|x|→∞

u = 0; (2.2)

mẅ + D(w′′′′ + κẇ′′′′) + Kw − µu0λw′ = −q
∣
∣
∣
y=0

, lim
|x|→∞

w = 0. (2.3)

Let u0 = (−u0, 0) be a constant vector (u0 ≥ 0). Equation (2.1) can be written as

u̇ − ν∆u + (u0 · ∇)u + ρ−1∇q = ((u0 − u∗) · ∇)u − (u · ∇)u∗,

∇ · u = 0 in R
2
+ × (0,∞).

(2.4)

We assume that the problem (2.4), (2.2), (2.3) admits a solution (u, q, w) with an exponential time depen-
dence u(x, y, t) = û(x, y, s) est, q(x, y, t) = q̂(x, y, s) est, and w(x, t) = ŵ(x, s) est. To determine at what s this
regime is possible, we substitute this solution into (2.4), (2.2), and (2.3) and apply a Fourier transform to the
variable x using the formula

f̃(ξ) =

+∞∫

−∞
f(x) e−iξx dx. (2.5)
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As a result, we obtain the following boundary-value problem for the system of ordinary differential equations (for
the variable y) for the images of the velocity field ũ(ξ, y, s), pressure q̃(ξ, y, s), and beam displacements w̃(ξ, s):

d2ũ1

dy2
− r2

1ũ1 − iξq̃

µ
=

iξu0

ν
e−λy ũ1 − u0λ

ν
e−λy ũ2,

d2ũ2

dy2
− r2

1ũ2 − 1
µ

dq̃

dy
=

iξu0

ν
e−λy ũ2, (2.6)

iξũ1 +
dũ2

dy
= 0;

ũ1(ξ, 0, s) = 0, ũ2(ξ, 0, s) = sw̃, lim
y→+∞ ũ = 0; (2.7)

(

ms2 + (1 + κs)Dξ4 + K − iµu0λξ
)

w̃ = −q̃(ξ, 0, s). (2.8)

Here r1 =
√

(s − iξu0)/ν + ξ2 and it is assumed that Re
√

z ≥ 0 ∀ z ∈ C.
As shown in [8], a solution of (2.6), (2.7) can be found in the form of exponential series

ũ1(ξ, y, s) = −B1(0)sw̃
P

e−r1y A1(y) +
A1(0)sw̃

P
e−|ξ|y B1(y),

ũ2(ξ, y, s) = −B1(0)sw̃
P

e−r1y A2(y) +
A1(0)sw̃

P
e−|ξ|y B2(y), (2.9)

q̃(ξ, y, s) = −B1(0)sw̃
P

e−r1y A3(y) +
A1(0)sw̃

P
e−|ξ|y(B3(y) + B4),

where

P = A1(0)B2(0) − B1(0)A2(0),

A1(y) =
∞∑

k=0

e−kλy a
(k)
1 , A2(y) =

∞∑

k=0

e−kλy a
(k)
2 , A3(y) =

∞∑

k=0

e−kλy a
(k)
3 ,

B1(y) =
∞∑

k=0

e−kλy b
(k)
1 , B2(y) =

∞∑

k=0

e−kλy b
(k)
2 , B3(y) =

∞∑

k=0

e−kλy b
(k)
3 , B4 =

ρ(s − iξu0)
iξ

;

a
(k)
1 =

( iξu0

νλ

)k r1 + kλ

k!r1
Rk, a

(k)
2 =

( iξu0

νλ

)k iξ

k!r1
Rk,

a
(k)
3 =

( iξu0

νλ

)k 2λ2µiξ

(k − 1)!r1((r1 + kλ)2 − ξ2)
Rk−1,

b
(k)
1 =

( iξu0

ν

)k |ξ| + kλ

k!|ξ| Qk, b
(k)
2 =

( iξu0

ν

)k iξ

k!|ξ| Qk,

(2.10)

b
(k)
3 =

( iξu0

ν

)k 2µiξ

k!|ξ|(2|ξ| + kλ)
Qk−1;

Rk =
k∏

j=1

(r1 + jλ)(r1 + (j − 2)λ) − ξ2

(2r1 + jλ)((r1 + jλ)2 − ξ2)
, R0 ≡ 1,

Qk =
k∏

j=1

2(j − 1)|ξ| + j(j − 2)λ
(2|ξ| + jλ)((|ξ| + jλ)2 − r2

1)
, Q0 ≡ 1.
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Fig. 1. Real parts of the roots s∗i of the dispersion equation (2.12) for the case of a viscous fluid: the
solid and dotted curves refer to κ = 0 and 0.01 sec; curves 1 refer to the wave moving downstream
and curves 2 refer to the wave moving upstream.

Fig. 2. Imaginary parts of the roots s∗i of the dispersion equation (2.12) for the case of a viscous
fluid (notation the same as in Fig. 1).

In the expressions for Rk and Qk, the powers of the numerators are smaller than those of the denominators,
and, hence, their moduli do not exceed const/k!. Therefore, the moduli |a(k)

i | and |b(k)
i | in (2.10) are bounded from

above by the product of the constant and the general term of the Taylor series for the exponential function. Thus,
it can be concluded that the series in (2.9) converge for all ξ and u0, and they converge uniformly for y because
e−kλy ≤ 1 and y ≥ 0.

Substitution of q̃(ξ, 0, s) into the beam elasticity equation (2.8) yields the following condition for the existence
of a nontrivial solution w̃ for system (2.6)–(2.8):

ms2 + K + (1 + κs)Dξ4 − iµu0λξ +
−A3(0)B1(0) + (B3(0) + B4)A1(0)

P
s = 0. (2.11)

Multiplying the series, we obtain the determinant P in the form

P =
∞∑

n=0

( iξu0

νλ

)n iξ

r1|ξ|
n∑

k=0

λn−k(r1 − |ξ| + (2k − n)λ)
k!(n − k)!

RkQn−k.

Multiplying Eq. (2.11) by iξP and again multiplying the series by each other, we obtain the dispersion relation

(ms2 + K + (1 + κs)Dξ4 − iµu0λξ)iξP +
ρs(s − iξu0)r1

|ξ| +
∞∑

n=1

( iξu0

νλ

)n{ρs(s − iξu0)(r1 + nλ)
|ξ|n!

Rn

+2µs

n−1∑

k=0

λn−k

k!(n − k − 1)!

( r1 + kλ

(n − k)(2|ξ| + (n − k)λ)
− λ(|ξ| + (n − k − 1)λ)

(r1 + (k + 1)λ)2 − ξ2

)

RkQn−k−1

}

= 0. (2.12)

The roots s∗i of the dispersion equation (2.12) indicate an exponential time regime, whose existence was
suggested above. The stability of the fluid–beam system is defined by the signs of the real parts of the roots s∗i .

3. Stability Analysis. Numerical studies were performed for a particular model with parameters
m = 80 kg/m2, D = 15,000 N ·m, K = 20,000 N/m3, ν = 10−6 m2/sec, ρ = 1000 kg/m3, λ = 1000 m−1,
and ξ = 1 m−1. The velocity range u0 = 0–25 m/sec was chosen.

Figure 1 shows a curve of the real parts of the roots s∗i (i = 1, 2) of the dispersion equation (2.12) versus
the flow velocity u0 referred to umax = 25 m/sec for zero (solid curve) and nonzero (dotted curve) internal viscosity
of the beam. Figure 2 gives similar dependences for the imaginary parts of the roots s∗i . It is obvious that for
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Fig. 3. Neutral stability curve for Eq. (2.12) (dotted curve) and its asymptotic
approximation (solid curve).

u0 = 0, Eq. (2.12) has two complex conjugate roots with a negative real part, which corresponds to the presence of
two damping waves in the fluid that propagate in the opposite directions: downstream (the root s∗1 with a positive
imaginary part) and upstream (the root s∗2 with a negative imaginary part). As the velocity u0 increases for κ = 0,
the quantity Re s∗2 is the first to become positive, after which the quantity Re s∗1 becomes positive, i.e., the wave
propagating upstream is the first to become unstable. In the presence of internal viscosity, the wave propagating
upstream becomes unstable for a larger value of the velocity. The wave propagating downstream remains stable for
all values of u0. The internal viscosity has little effect on the imaginary parts of the roots or on the phase velocities
of the waves (the solid and dotted curves in Fig. 2 coincide).

Thus, in the presence of fluid viscosity ν, flutter instability of the system occurs, and the presence of internal
viscosity κ increases the stability of both waves.

We study the behavior of the roots of the dispersion equation (2.12) for various values of ξ. For small ξ,
since the roots s∗i are difficult to calculate, we consider the asymptotic approximation of relation (2.12) for ξ → 0
with accuracy up to O(ξ):

∆(s) ≡ ρs2

|ξ| + K + ms2 + ρsν

√
s

ν
− iρsu0λ

λ +
√

s/ν
= 0. (3.1)

Let us elucidate when the equation ∆(s) = 0 can have purely imaginary roots. For this, we substitute into it
s = ±iω, where ω > 0, and divide the real and imaginary parts of the last expression:

Re ∆(±iω) ≡ −ρω2

|ξ| + K − mω2 − ρων

√
ω

2ν
± ρωu0λ(λ +

√

ω/(2ν) )
λ2 + λ

√

2ω/ν + ω/ν
= 0,

Im ∆(±iω) ≡ ±ρων

√
ω

2ν
− ρωu0λ

√

ω/(2ν)
λ2 + λ

√

2ω/ν + ω/ν
= 0.

From the equation for Im ∆(±iω), we obtain

u0 = ±
(

λν +
√

2ων + ω/λ
)

. (3.2)

Substitution of (3.2) into the condition Re ∆(±iω) = 0 yields the relation

|ξ| = ρω2/(K − mω2 + ρωνλ). (3.3)

Thus, |ξ(ω)| does not depend on the choice of the sign of u0 and quantity −ω corresponds to negative values of the
velocity u0. Since u0 ≥ 0, from (3.2) we find

ω = λu0 − λ
√

λν(2u0 − λν). (3.4)
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Because relation (3.2) implies that u0 > νλ, the radicand in (3.4) is always positive. Hence, expression (3.4) defines
the real values ω > 0 and the dependence between |ξ| and u0, defined by relations (3.3) and (3.4), specifies the
neutral stability curve for Eq. (3.1), which is shown by the solid curve in Fig. 3. The dotted curve corresponds
to the neutral curve obtained by numerical solution of Eq. (2.12) [with the Reynolds’s number R = u0/(λν) used
as the parameter]. We note that the region of instability is below these curves. For small ξ, the curves almost
coincide, i.e., the values of the purely imaginary root of the approximation (3.1) coincide with the values of the
root s∗2 found numerically for the corresponding values of the parameters ξ and R. For small values of R, a second
purely imaginary root s∗1 does not exist; neither does a purely imaginary root s∗2 exist for R < 1, i.e., in this case,
the fluid–beam system is stable for any values of ξ.

To determine the effect of the fluid viscosity ν on the stability of the system, we compare the obtained
results with similar results for the case of an inviscid fluid. Ideal fluid flow over a flexible beam has been thoroughly
studied (see, for example, [1, 6]).

The perturbation potential ϕ of the ideal-fluid velocity u = ∇ϕ is a solution of the problem

∆ϕ = 0, lim
y→∞ϕ = O(1),

∂ϕ

∂y

∣
∣
∣
y=0

= ẇ − u0w
′; (3.5)

mẅ + D(w′′′′ + κẇ′′′′) + Kw = −ρ(ϕ̇ − u0ϕ
′)
∣
∣
∣
y=0

. (3.6)

Assuming an exponential time regime and performing a Fourier transform (2.5) in system (3.5), (3.6), we
obtain the image of the potential ϕ:

ϕ̃(ξ, y, s) = −s − iξu0

|ξ| w̃ e−|ξ|y .

Substitution of this solution into the image of condition (3.6) yields the dispersion relation for an inviscid fluid:

m|ξ|s2 + D|ξ|5(1 + κs) + K|ξ| + ρ(s − iξu0)2 = 0. (3.7)

We first consider the case κ = 0 (the absence of viscosity of the beam). Solving the quadratic equation (3.7)
for s, we obtain the roots

s1,2 =
iξu0ρ ± √

m|ξ|3ρu2
0 − (m|ξ| + ρ)(D|ξ|5 + K|ξ|)
m|ξ| + ρ

.

For u0 ≤ uf =
√

(D|ξ|4 + K)/(m|ξ|2) + (D|ξ|4 + K)/(ρ|ξ|), both roots are purely imaginary, and, in addition, for
u0 = uf , they are equal. For u0 > uf , the real part of s1 becomes positive, s2 becomes negative, and flutter
instability of the system occurs. Curves of the real and imaginary parts of the roots of Eq. (3.7) versus the flow
velocity u0 in the absence of internal friction κ are given in Fig. 4a and Fig. 4b, respectively (solid curves). Thus,
in the absence of both viscosities, for any value of the wave number ξ 
= 0 there is a range of velocity values in
which two waves with neutral stability exist in the fluid.

If the viscosity of the beam κ > 0, Eq. (3.7) has the roots

s1,2 =
2iξρu0 − κD|ξ|5

2(m|ξ| + ρ)
±

√

(κD|ξ|5 − 2iξρu0)2 − (m|ξ| + ρ)(D|ξ|5 + K|ξ| − ρξ2u2
0)

2(m|ξ| + ρ)
. (3.8)

From Eq. (3.8) it follows that in the case of small κ (which corresponds to the real values of the internal
viscosity) and u0 = 0, the dispersion equation has two complex conjugate roots with a negative real part. This
suggests that in the fluid there are two damping waves propagating in opposite directions. In this sense, the
nature of the waves in stagnant water is similar to the nature of the waves for the case of a viscous fluid. As
the flow velocity u0 increases, the real part of the root with a negative imaginary part s2 increases, and for
u0 = ud ≡ √

(D|ξ|4 + K)/(ρ|ξ|), it becomes equal to zero. In this case, the imaginary part s2 also becomes equal to
zero. With a further increase in u0, both Re s2 and Im s2 become positive. Hence, the wave propagating downstream
experiences divergent instability at the point u0 = ud. The wave propagating upstream remains stable for all values
of u0. Plots of the real and imaginary parts of the roots s1 and s2 for κ = 0.01 sec are given in Fig. 4 (dotted
curves).
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Fig. 4. Real (a) and imaginary (b) parts of the roots si of the dispersion equation (3.7) for the
case of an inviscid fluid: curves 1 refer to the downstream propagating wave and curves 2 refer to
the upstream propagating wave; the solid and dotted curves refer to κ = 0 and 0.01 sec, respectively.
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curves 1 and 2 refer to the downstream and upstream propagating wave, respectively.

To describe the damping effect, we give an asymptotic expansion of the real part of expression (3.8) in powers
of κ:

Re (s1,2) ≈ − κD|ξ|5
2(m|ξ| + ρ)

(

1 ± 1√
A

|ξ|ρu0

)

at u0 < uf . (3.9)

Here A = (m|ξ|+ ρ)(D|ξ|5 + K|ξ|)−m|ξ|3ρu2
0. For the examined values of κ, this expansion almost coincides with

the real part of expression (3.8), except in the vicinity of the point u0 = uf , where the expression of A vanishes
(Fig. 5).

From (3.9) it follows that at small velocities u0, the quantities Re (s1,2) depend linearly on κ. The product
κu0 indicates stabilization of the downstream wave with increasing κ, although the velocity u0 = ud at which the
wave propagating upstream and, hence, the entire system become unstable does not depend on κ. In addition, ud is
always smaller than uf , and, therefore, in the presence of internal viscosity, the system generally becomes unstable
sooner than it does without viscosity.
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The results of the studies performed suggest that for the specified parameters of the beam in the case of
viscous and inviscid fluids, the internal viscosity κ stabilizes the wave propagating downstream. As regards the wave
propagating upstream, its stabilization is observed only at small velocities. The external viscosity ν destabilizes the
wave propagating upstream: it rapidly loses stability; at the same time, the neutral wave propagating downstream
becomes damping but then, as the flow velocity u0 increases, it nevertheless loses stability. Thus, the effect of the
viscous terms on the vibration waves leads to a significant change in the flow pattern.
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